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ABSTRACT

We study the complexity of social welfare optimization in multi-
agent resource allocation. We assume resources to be indivisible
and nonshareable and agents to express their utilities over bundles
of resources, where utilities can be represented in either the bundle
form or the k-additive form. Solving some of the open problems
raised by Chevaleyre et al. [2] and conf rming their conjectures, we
prove that egalitarian social welfare optimization is NP-complete
for both the bundle and the 1-additive form, and both exact
utilitarian and exact egalitarian social welfare optimization are
DP-complete, each for both the bundle and the 2-additive form,
where DP is the second level of the boolean hierarchy over NP. In
addition, we prove that social welfare optimization with respect
to the Nash product is NP-complete for both the bundle and the
l-additive form. Finally, we briefy discuss hardness of social
welfare optimization in terms of inapproximability.
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1. INTRODUCTION

In multiagent resource allocation (see, e.g., [14, 5, 7, 4, 6,
1] and the survey [2]), autonomous agents (e.g., bidders in an
auction) express their utilities over bundles of resources, where
we assume resources to be indivisible and nonshareable. The
aim is to obtain an allocation of these bundles of resources to the
agents. A particularly important task in this regard is social welfare
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optimization. An allocation procedure assigns bundles of resources
to the agents, who thus may realize their individual utilities for
the bundles received. A system designer, however, typically takes
a more global perspective and seeks to optimize the allocation
procedure not toward increasing the individual utility of a single
agent, but rather toward maximizing social welfare of the whole
“society of agents.” The most central concepts of social welfare
are utilitarian and egalitarian social welfare, and a compromise of
both ideas is the Nash product (see, e.g., Chevaleyre et al. [2]).

In a bit more detail, utilitarian social welfare sums up the agents’
individual utilities in a given allocation, thus providing a useful
measure of the overall—and also of the average—beneft for
society. For instance, in a combinatorial auction the auctioneer’s
aim is to maximize the sum of the prizes paid for the items
auctioned, no matter which agent can realize which utility.

In contrast, egalitarian social welfare gives the utility of the
agent who is worst off in a given allocation, which provides a
useful measure of fairness in cases where the minimum needs of
all agents are to be satisfed. For example, think of distributing
humanitarian aid items (such as food, medical aid, blankets, tents,
etc.) among the needy population in a disaster area (e.g., an area
hit by an earthquake or a tsunami). Guaranteeing every survivor’s
continuing survival is the primary goal in such a scenario, and it is
best captured by the notion of egalitarian social welfare.

The Nash product is the product of the agents” individual utilities
and can be thought of as combining utilitarian and egalitarian social
welfare. On the one hand, just as utilitarian social welfare, the
Nash product increases even with single increasing individual
utilities that can be realized by the agents. On the other hand,
just as egalitarian social welfare, the Nash product reaches its
maximum when the utilities realized are distributed equally over
all the agents, whereas social welfare in terms of the Nash product
vanishes as soon as there is only one agent realizing no utility at
all (and it sharply decreases when there are agents whose realized
utility drops down to a value close to zero).

We study the computational complexity of social welfare
optimization problems. A crucial aspect here is how the agents’
utility functions are represented. The most basic representation
forms are the bundle form and the k-additive form, see, e.g.,
Chevaleyre et al. [2]. The bundle form (which, in terms of
combinatorial auctions, corresponds to the XOR bidding language,
see, e.g., [2]) simply enumerates all bundles (with a nonzero utility)
and attaches a numerical utility value to each bundle. While this
form is fully expressive, it is not very compact in general, i.e., its
size can be exponential in the number of resources. The k-additive
representation form can be more succinct if k is small enough;
however, it is fully expressive only for suff ciently large k (see [4]).

The complexity of utilitarian and egalitarian social welfare



optimization with respect to these forms of representing utilities
has been investigated by various authors (see, e.g., [7, 4, 6, 1]).
Chevaleyre et al.’s comprehensive survey of issues in multiagent
resource allocation [2] presents a number of complexity results
obtained, and also a number of conjectures regarding open issues.
We solve in the affrmative four of the seven open complexity
assertions conjectured in [2] by proving that egalitarian social
welfare optimization is NP-complete for both the bundle and the
l-additive form, and both exact utilitarian and exact egalitarian
social welfare optimization are DP-complete, each for both the
bundle and the 2-additive form, where DP is the second level of the
boolean hierarchy over NP (see [12]; some motivation for studying
completeness in DP is given in Section 2). In addition, we prove
that social welfare optimization with respect to the Nash product is
NP-complete for both the bundle and the 1-additive form. Finally,
we brief 'y discuss some of the hardness results for social welfare
optimization in terms of inapproximability.

Organization of the Paper.

The general framework in which our problems are formalized
is described in Section 2. Section 3 presents previous results
and related work and gives an overview of our results. Section 4
provides our complexity results for the bundle form and Section 5
those for the k-additive form. Section 6 gives a short discussion of
inapproximability for social welfare optimization, and Section 7,
fnally, concludes by stating some open questions.

2. PRELIMINARIES AND NOTATION

Basic Notions from Multiagent Resource Allocation.

We adopt the framework for multiagent resource allocation
described in [2]. Let A = {aj,as,...,an} be a set of n agents,
let R ={ry,ry,...,rm} be a set of m indivisible and nonshareable
resources (i.e., each resource is assigned as a whole and can be
assigned to only one agent), and let U = {uj,U,,...,un} be a set
of utility functions. Letting 2R denote the set of subsets of R,
uj : 2R — Q gives agent a;’s utility for each bundle of resources
(independently of the utilities of other agents).

An allocation for A and R is a mapping X : A — 2R with X (aj) N
X(ax) = 0 for any two agents aj and ay, j # k. As a shorthand,
we write Uj (X)) for uj(X(aj)), i.e., for the utility agent a; can realize
in allocation X. The set of all possible allocations for A and R is
denoted by ITpm and has cardinality |TInm|| = n™. We’ll refer to
such a triple (A,R,U) as a multiagent resource allocation setting
(or a MARA setting, for short).

Utility functions can be given in different ways, and the
representation form potentially affects the complexity of the
problems we will consider later. We will focus on the following
two representation forms (see [2]):

1. The bundle form: Agent a;’s utility for any bundle R" C R of
resources is given by (R’,Uj(R’)), where pairs with uj(R') =0
are omitted. This representation is “fully expressive” (i.e.,
every utility function can be described in bundle form);
however, the size of descriptions can be exponential in the
number of resources.

2. The k-additive form, for a f xed positive integer k: Agent a;’s
utility for any bundle R’ C R of resources is given as

uR)= Y of
TCR|TI<k

where for each bundle T C R’ with || T|| <k, o5 is a unique
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coeff cient expressing the “synergetic” value of agent a;
owning all the resources in T. This representation form is
fully expressive only if K is large enough. Choosing K to be
relatively small allows for a relatively succinct representation
of utility functions. The k-additive form was proposed for
representing utilities in multiagent resource allocation by
Chevaleyre et al. [3, 4] and, independently, in combinatorial
auctions by Conitzer et al. [5].

Alternatively, straight-line programs (i.e., the SLP form) could
be used for representing utilities, see [2, 7]. As we won’t consider
this form, we don’t def ne it here.

To measure the quality of an allocation, various notions of social
welfare have been proposed (see, e.g., [2]). In this paper, we focus
on the following types of social welfare.

DEFINITION 2.1. For (A,R,U) a MARA setting and X an
allocation for A and R,

1. the utilitarian social welfare induced by X is defined as

swy(X) = uj(X),

ajeA
2. the egalitarian social welfare induced by X is defined as
swe(X) = min{uj(X) | aj € A},

3. the Nash product induced by X is defined as
swi(X) = [T uj(X).

ajeA

Chevaleyre et al. [2] considered various social welfare optimi-
zation problems. We use the following naming scheme, where
the subscript form € {bundle,l-additive,2-additive,...}
represents either one of the above representation forms for
utility functions (i.e., the bundle form or the k-additive form
for k € {1,2,...}). The following social welfare optimization
problems will be of central importance in this paper.

UTILITARIAN SOCIAL WELFARE OPTIMIZATIONform

Given: A MARA setting (A,R,U), where [[A]] = [[U][=n
and [|[R|| = m and where form indicates how the
utility functions in U are represented, and K € Q.

Question:  Does there exist an allocation X € Iy, such that

swy(X) > K?

We use the shorthand USW Oy to denote the above problem.

EGALITARIAN SOCIAL WELFARE OPTIMIZATION¢ oy and
NASH PRODUCT SOCIAL WELFARE OPTIMIZATION¢oyy (Which
we abbreviate as ESWOsorm and NPSWOg¢,p, respectively)
are defned by changing “swy(X)” into, respectively, “swe(X)”
and “swy(X)” in the question feld. The exact variant of, e.g.,
USWOsorp is denoted by XUSW O¢orp and is def ned as follows.

EXACT UTILITARIAN SOCIAL WELFARE OPTIMIZATIONorn

Given: A MARA setting (A,R,U), where [|A]| = [[U]| =n
and [|[R|| = m and where form indicates how the
utility functions in U are represented, and K € Q.

Question:  Does it hold that max{swy(X) | X € [Thm} = K?

Changing “swy(X)” into, respectively, “swe(X)” and “swy (X)”
in the question feld, we obtain EXACT EGALITARIAN SOCIAL
WELFARE OPTIMIZATIONforn (XESWOsorm, for short) and
EXACT NASH PRODUCT SOCIAL WELFARE OPTIMIZATION¢orp
(XNPSWOg¢orn, for short).



In addition, Chevaleyre et al. [2] considered the problem of
whether there exists an envy-free allocation. Envy-freeness means
that every agent is at least as satisfed with his or her bundle of
resources in a given allocation as he or she would be with any other
agent’s bundle. Formally speaking, an allocation X for A and R
is said to be envy-free if for any two agents a; and aj in A, we
have uj(X(aj)) > Ui(X(aj)). ENVY-FREENESStorn (EFsorm, for
short) denotes the problem of determining, given a MARA setting
(A,R,U), whether there exists an envy-free allocation X € In m.

Basic Notions from Complexity Theory.

We assume the reader is familiar with the basic complexity-
theoretic notions such as the complexity classes P (deterministic
polynomial time), NP (nondeterministic polynomial time), and
coNP, the notion of (polynomial-time many-one) reducibility,
denoted by <5, and the standard notions of hardness for and
completeness in a complexity class € (with respect to <5 ).

Papadimitriou and Yannakakis [12] introduced the complexity
class DP as the set of differences of any two NP sets, i.e.,
DP = {A—B | A,B € NP}. DP is known to be the second level
of the boolean hierarchy over NP and captures the complexity of
the exact variants of many NP-hard optimization problems. For
example, suppose the optimum value max{swy(X) | X € ITnm}
of utilitarian social welfare in a given MARA setting equals 2315.
Then a “yes” instance of USWOsorm, say (A,R,U,17), merely
indicates that this maximum is at least 17, whereas (A,R,U,17)
would be a “no” instance of XUSWOsory and the only “yes”
instance (A,R,U,2315) of XUSWOsorn provides a much more
precise information. Needless to say that deciding whether such
an optimum is hit exactly is a computationally more challenging
task than deciding whether it falls into some range: DP is widely
believed to be a strictly more powerful class than NP. Other
natural problems that typically are complete for DP are unique
solution problems, which test the uniqueness of solutions for NP
problems, and critical graph problems where a small change of
the input graph (such as adding just one edge or deleting just
one vertex and its incident edges) switches some property of
this graph (e.g., its three-colorability). For more background on
computational complexity (especially with regard to DP and the
boolean hierarchy over NP), we refer to [12] and the textbook [13].

3. RELATED WORK AND OVERVIEW OF

OUR RESULTS

Bouveret and Lang [1] proved, among many other results, that
EFpundie is NP-complete. Chevaleyre et al. [4] proved that both
USWOuyundie and USWOs_a44qitive are NP-complete. When
utilities are represented in the SLP form, NP-completeness is
also known for the problem of deciding whether there is an
envy-free allocation for a given MARA setting [6] and for the
utilitarian social welfare optimization problem [7]. Regarding the
remaining cases, Chevaleyre et al. [2] conjectured that for each of
the bundle, the 2-additive, and the SLP form, (1) egalitarian social
welfare optimization is NP-complete, and (2) exact utilitarian
social welfare optimization is DP-complete. We prove these two
conjectures in the aff rmative for the bundle form in Section 4,
and for the k-additive form in Section 5. In addition, for both the
bundle and the k-additive form, we prove that exact egalitarian
social welfare optimization is DP-complete and that social welfare
optimization via the Nash product is NP-complete.

Chevaleyre et al. [2] also conjectured that EFj_sqqitive 1S
NP-complete. However, an aff rmative solution to this conjecture
follows from a result of Lipton et al. [11] who proved that
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EF|-aqditive 1S NP-complete. Note that EF |_5q4itive 1S @ special
case of EFy-aqqitive, SO the latter problem immediately inherits
the NP-hardness lower bound of the former problem; membership
of EF>_a44itive in NP is easy to see.

4. COMPLEXITY OF SOCIAL WELFARE
OPTIMIZATION: BUNDLE FORM

As mentioned above, Chevaleyre et al. [2] conjectured that
ESWOgpuynd1ie is NP-complete.  Our frst result solves this
conjecture in the affrmative, and in addition shows the same
result for NPSWOgpundie-

THEOREM 4.1. ESWOpundie and NPSWOypyundie are NP-
complete.

Proof. Membership in NP is easy to see for both problems:
Given an instance (A,R,U,K), where (A,R,U) is a MARA setting
and K € Q, in polynomial time we can nondeterministically guess
an allocation and then deterministically compute the minimum
(respectively, the product) of the agents’ utilities and compare it
with K.

We show both hardness results via a single reduction from
3-SAT, one of the standard NP-complete problems (see, e.g.,
Garey and Johnson [8]), which is defned as follows: Given a
boolean formula ¢ in conjunctive normal form with at most three
literals per clause, is there a truth assignment to the variables of ¢
that makes ¢ evaluate to true?

We are given an instance ¢ of 3-SAT. Let C = {c;,C,...,Cn}
be the set of clauses of ¢. Without loss of generality, we assume ¢
to contain only variables that occur both as a positive literal and as a
negative one. If we have a variable that does not occur in both ways,
the clause containing this variable can always be satisfed, and so
deleting such a clause does not affect the formula’s satisf ability
(i.e., ¢ is satisfable if and only if the thus reduced formula is
satisf able). Furthermore, we assume that there are at least two
clauses (i.e., N > 2) and no clause contains any variable twice (be it
as a positive or as a negative literal).

We introduce one agent aj for each clause ¢j of ¢ and an
additional agent ap, resulting in a set A = {ag,aj,...,an} of
agents. Depending on the literals of the clauses, we defne the
set R of resources as follows. We introduce a new resource for
each occurrence of a literal in a clause and each occurrence of the
negation of the same literal in a clause to the right. In more detail,
we defne a resource for each pair ((¢,s), (—¢,t)) exactly if either
¢ or =/ is a variable of @ and 1 <s <t <n, where (k,i) indicates
the occurrence of literal k in clause ¢;.

Now, we set the utilities of the agents aj in A, j # 0, as
follows. Agent aj’s nonzero utilities depend on the clause ¢ j.l
For each literal £ or —¢ in cj, agent aj forms a bundle with all
pairs ((¢,5), (—¢,t)) where either s = j ort = j, and assigns utility
one. If the negated literal =/ occurs only once, the corresponding
bundle contains only a single resource. Furthermore, if the clause
contains at least two literals then agent aj assigns a utility of one
to each combination of two of these bundles, and, analogously,
if the clause contains three literals then agent aj assigns a utility
of one to the combination of all three bundles. Since each clause
contains at most three literals, each agent assigns nonzero utilities
to at most seven nonempty bundles. Finally, agent ay has a utility
of one for the empty bundle and a utility of n = ||C|| for the bundle

IRegarding an empty bundle of resources, each agent a i» 170,
assigns utility value zero.



containing all resources.?

In addition, we choose the same parameter K = K¢ = Ky = 1
for our instances of ESWOpyng1e and NPSWOyyna1e, namely,
(A,R,U,Ke) and (A,R,U,Ky). It is easy to see that (A,R,U,K) can
be computed in polynomial time from ¢, since each clause consists
of at most three variables and thus each agent forms utilities for at
most seven nonempty bundles.

Note that each truth assignment to the variables of ¢ corresponds
to an assignment of the resources in R to the agents aj, 1 < j<n,
as follows. If £ is a literal in clause cj that is true under a given
truth assignment, then agent aj is assigned the bundle consisting
of all resources ((£, j),(—¢,t)) with j <t and ((—¢,8), (¢, j)) with
s < j. If none of the literals in clause Cj is true under a given truth
assignment (i.e., clause Cj is evaluated to false and hence ¢ is not
satisf ed), then agent aj does not receive any resource.

We claim that there exists an allocation whose egalitarian social
welfare is exactly K = 1 if and only if ¢ is satisf able.

From left to right, suppose there exists an allocation X with
swe(X) = 1. So @y is assigned the empty bundle with utility one. If
all resources are allocated according to X then a truth assignment to
the variables of ¢ that makes ¢ true can be obtained as follows. If
agent aj, 1 < j <n, is assigned resource ((¢,S), (—¢,t)) with either
§ = j or t = j then literal £ can be set so as to satisfy clause Cj.
Thus, if agent aj holds at least one nonempty bundle, clause Cj
is satisf ed. Note that the assignment of pairwise disjoint bundles
does not allow to assign the same value to both literal ¢ and its
negation —/. Since swe(X) = 1, it follows from the defnition of
egalitarian social welfare that even the agent that among ay,...,an
is worst off must hold a nonempty bundle. Thus, all clauses of ¢
are satisf ed under the truth assignment corresponding to X.

From right to left, if ¢ is satisf able, there is a truth assignment
satisfying all clauses ¢j € C. In the corresponding allocation X
of bundles of resources, each of the agents aj,...,a, receives a
nonempty bundle and so can realize a utility of one. Thus, ag is
assigned the empty bundle, also with utility one. So swe(X) = 1.

Analogously, one can show that there exists an allocation X
for which the Nash product is exactly K =1 if and only if ¢ is
satisf able. a

As pointed out by a reviewer, Theorem 4.1 can be proven by a
simpler reduction from, e.g., EXACT SET COVER. However, the
slightly more involved reduction from 3-SAT given above has a
property’ that will make Lemma 4.3 applicable and thus allows us
to reuse and extend the above reduction to a reduction that works
for proving Theorem 4.4 below.

The following example illustrates the reduction from the proof
of Theorem 4.1 and will be continued in Example 4.5 to show how
this reduction is modif ed for the proof of Theorem 4.4.

EXAMPLE 4.2. Let

¢ = (XIVX2VX3) A (=X V=X) A (=X V —X3)

be a given boolean formula. Note that ¢ is satisfiable, e.g., by
the truth assignment (1,0,0) to (x;,X%2,X3). According to the proof
of Theorem 4.1, we introduce the agents a, a;, a,, and a; (since
¢ consists of n = 3 clauses) and we have the following resources

2The utility for the bundle of all resources can be set to any positive
integer value in this proof. However, in the upcoming proof of
Theorem 4.4 (which reuses and extends the present construction),
we need @y to have a utility of n = ||C|| for this bundle.

3Namely, that the maximum utilitarian social welfare in the MARA
setting constructed from formula ¢ over clause set C is exactly
[C|| +1 if ¢ is satisf able, and is exactly ||C|| otherwise.
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resulting from ¢:

ry=((x,1),(=x1,2)), r2=((x2,1),(%2,2)),
r3=((x2,1),(—x2,3)), r4=((x3,1),(—x3,3)).

Since the first clause of ¢ contains three literals, agent a; has
nonzero utilities for seven bundles of resources. However, a, and a3
bid on only three bundles each, as the second and the third clause
contain only two literals.* At last, agent a, always bids on two
bundles (the empty one and the one with all resources), see Table 1.

[ Agent || Pairs (Bundle, Utility) |
ag (0,1), ({ri,r2,13,14},3)
a ({rl} 1), ({r2,r3}, 1), ({ra}, 1),
({ri,r2,rs}, 1), ({r1,ra}, 1),
({r2,r3,r4}, 1), ({r1,r2, 13,14}, 1)
a ({1, ({ra}, D), ({r1,r2}, 1)
a3 ({r3}, 1), ({ra}, 1), ({r3,ra}, 1)

Table 1: Utilities of the agents resulting from ¢

An allocation corresponding to the truth assignment (1,0,0) for
¢ is obtained (according to the proof of Theorem 4.1) by giving 0
toag, {ri} toay, {r} toay, and {rs,rs} to a3. Thus, each agent
can realize a utility of exactly one. This means that the utilitarian
social welfare in this allocation X is n+ 1 = 4, whereas both the
egalitarian social welfare of X and the Nash product of X are one.

As noted above, to apply Lemma 4.3 in the proof of Theorem 4.4
the maximum utilitarian social welfare in the MARA setting
constructed from some unsatisfiable formula has to be the number
of clauses (see Footnote 3). So consider the unsatisfiable formula

v (Y1 VY2) A (Y1 VY2) A Y1V Y2) A=YV —Y2)

with n’ = 4 clauses. Now, the reduction from the proof of
Theorem 4.1 gives the following resources:

ro=((y,1),(=y1,2)), r2=(y1,1),(=y1,4)),
r3=((y2,1),(=y2,3)), r4a=1((y2,1),(-y2,4)),
rs=((=y1,2),(y1,3)), re=1((y2,2),(=y2,3)),
r7=1((y2,2),(-y2.4)), rs=((y1.3),(-y1.4)).

Table 2 shows the nonzero utilities of the agents ay, aj,...,a4.

| Agent || Pairs (Bundle, Utility) |
a (0,1), ({r1,r2,13,14,15,6,77,18},4)
a ({flﬂz} 1), ({r3.14}, 1),
({ri,r, 13,14}, 1)
a ({ri.rsh 1), ({re.r71, 1),
({r1>r57r67r7} 1)
a ({rs.rs}, 1), ({r3.16}, 1),
({r3>r57r67r8} 1)
ay ({r2,rs}, 1), ({ra,r7}, 1),
({ra,r4,r7,18},1)

Table 2: Utilities of the agents resulting from y

Since the recources are indivisible and nonshareable, at least
one of the agents aj, 1 <i < 4, cannot realize any utility at all.
Thus, in any allocation X, both the egalitarian social welfare of X
and the Nash product of X is zero, and the utilitarian social welfare
of X cannot be n’ 4- 1 = 5. However, all resources can be assigned
to ag, so the utilitarian social welfare in this allocation is n’ = 4.

4When we say an agent bids on a bundle, we mean this agent
assigns some nonzero utility to this bundle.



The above examples show that, as claimed in the proof of
Theorem 4.1, the given formula is satisfiable if and only if there
is some allocation whose egalitarian social welfare (respectively,
whose Nash product) is exactly one.

Chevaleyre et al. [2] conjectured that XUSWOpypdie 18
DP-complete. ~ We solve this conjecture in the affrmative,
and we establish the corresponding result for XESWOgpundie-
Theorem 4.4 below makes use of a result by Wagner [16], who
provided suff cient conditions for proving hardness for each level
of the boolean hierarchy over NP. We state Wagner’s result here
for the case of DP, the second level of this hierarchy.

LEMMA 4.3 (WAGNER [16]). Let A be some NP-complete
problem and let B be an arbitrary problem. If there exist a
polynomial-time computable function f such that, for all input
strings x; and x, for which x, € A implies x; € A, we have that

(X1 EANXy €A) <= f(x1,X2) €B, (4.a)

then B is DP-hard.

THEOREM 4.4. XUSWOpundie and XESWOpung1e are DP-
complete.

Proof.  To prove membership of XUSW Oyyna1e in DP, consider
the condition max{swy(X) | X € IIhm} = K, where we may

assume that K € Z.> Note that this condition is true if and only if
1. (3X € Mnm) [swy(X) > K] and
2. (WX €llnm) [swy(X) < K+1].

Since the f rst condition is an NP predicate and the second condition
is a coNP predicate, we can write XUSWOpund1e as CND for
suitable NP sets C and D. Thus, XUSWOpundie is in DP.

The proof that XESW Opyndie is in DP as well is analogous and
thus omitted.

To show that XUSWOypypdie is DP-hard, we apply Lemma 4.3
with A = 3-SAT and B = XUSWOpund1e. Recall the construction
presented in the proof of Theorem 4.1. Note that the maximum
utilitarian social welfare is exactly K = n+1 if ¢ is satisfable
(because each of the n+ 1 agents can realize a utility of exactly
one in that case), and is K = n otherwise (because either one agent
aj, 1 <i < n, cannot realize any bundle at all, whereas the other
agents aj, 0 < j <nand j # i, will realize a utility of one each, or
agent ay can realize a utility of n and all other agents cannot realize
any utility); see also Example 4.2.

Let ¢ and y be two given boolean formulas in conjunctive
normal form, where @ has n clauses and y has n’ clauses and @
and y have disjoint variable sets. According to the hypothesis of
Lemma 4.3, we assume that if y is satisf able then so is ¢.

We apply the same construction as in the proof of Theorem 4.1
to both ¢ and v, thus obtaining two MARA settings, (A?,R?,U?)
and (AY,RY,UY). Our construction is completed by merging
them to obtain a MARA setting (A,R,U) with A = A? UAY,
R=R?URY,and U =U®UUYVY, and by setting Kyy =n+n"+1,
so (A,R,U,Kyy) is our XUSWOpyna1e instance.

Since the variable sets of ¢ and y are disjoint, the sets of agents,
A? and AY, and the sets of resources, R? and RY, are disjoint as
well. Note further that each agent in A? bids only on bundles of
resources from R?, and each agent in AY bids only on bundles of

SThis assumption can be made without loss of generality, because
we can multiply all utilities and K by their least common multiple.
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resources from RY.® From our construction and these observations
it follows that:

1. If ¢ € 3-SAT and y € 3-SAT then there exists an allocation
X with SWu(X) = n+n/+2 > Kxu, SO

maX{SWu(X) | X e HHAH”RH} > Kyu.-

2. If ¢ € 3-SAT and y ¢ 3-SAT then there exists an allocation
X with swy(X) =n-+n’+ 1 = Ky, and there is no allocation
Y with SWy (Y) > Kxu, SO

maX{SWu(X) | X e HHAH”RH} = Kyu-

3. If ¢ ¢ 3-SAT and y & 3-SAT then for any allocation X,
swy(X) < n+n’ < Kyy, so

maX{SWu(X) | X e HHAH”RH} < Kyu-

The case that ¢ ¢ SAT and y € SAT cannot occur by our
assumption that if y is satisf able then so is @. Hence, (¢ € 3-SAT
and y ¢ 3-SAT) if and only if (A,R,U,Kyy) € XUSWOpyndie, SO
(4.a) is true. By Lemma 4.3, XUSWOpyna1e is DP-hard.

To show that XESWOpyng1e 18 DP-hard, we again start from
two formulas ¢ and y with disjoint variable sets and such that if v
is satisf able then so is ¢. We apply the same construction as above
except with slightly different utilities. First, we double all utilities
of the agents obtained from ¢, so

e every agent ai(p, 1 <i < n, now has a utility of two for each
of the bundles mentioned in the proof of Theorem 4.1, and

° ag has a utility of two for the empty bundle and a utility of
2n for the bundle containing all resources obtained from ¢.

Second, we adjust the utilities of the agents obtained from .
Again, we double all utilities, so

e cvery agent a}”, 1 < j </, now has a utility of two for each
of the bundles mentioned in the proof of Theorem 4.1, and

° a(l)’/ has a utility of two for the empty bundle and a utility of
2n’ for the bundle containing all resources obtained from .

In addition, each agent a}”, 1 < j <1, has a utility of one for the
empty bundle. This means that each agent a}” can realize a utility

of one even if a}” doesn’t get any resource.

Merging the MARA settings (A?,R?.U?) and (AY,RY.UY)
resulting from ¢ and y, respectively, we obtain a MARA setting
(A,R,U) as above, and we set Kye = 1, so (A,R,U,Kye) is our
XESW O Oypungie instance. It follows that:

1. If ¢ € 3-SAT and y € 3-SAT then there is an allocation X
with swe(X) =2 > Kye, s0

max{SWe(X) | X e HHAHHRH} > Kye.
2. If ¢ € 3-SAT and y ¢ 3-SAT then there is an allocation

X with swe(X) = 1 = Kye and there is no allocation Y with
swe(Y) > Kye, s0

max{SWe(X) | X e HHAHHRH} = Kye.
3. If ¢ ¢ 3-SAT and y & 3-SAT then for any allocation X,
SWe(X) =0< Kxe, SO
maX{SWe(X) | X e HHAH-,HRH} < Kye.

OThis implies that no agent in A bids on bundles of resources from
both R? and RY'.



Again, the case that ¢ ¢ SAT and y € SAT cannot occur. Hence,
(¢ € 3-SAT and y & 3-SAT) if and only if (A,R,U,Kye) €
XESWOpundie, S0 (4.2) is true. By Lemma 4.3, XESWOpundie
is DP-hard. a

EXAMPLE 4.5 (CONTINUING EXAMPLE 4.2). Considering
the two boolean formulas ¢ and y from Example 4.2, we see that

(¢ € 3-SAT and y ¢ 3-SAT)
= (AR,U,Kyy) € XUSWOpundte, (4.b)

where Kyy =n+n"+1=3+4+1=28 and (A,R,U) is the
MARA setting constructed from ¢ (with three clauses) and v
(with four clauses) as in the proof of Theorem 4.4. Note that (4.b)
corresponds, for the concrete formulas ¢ and y from Example 4.2,
to the second case in establishing (4.a) to show XUSWOpunaie
DP-hard via Lemma 4.3 in this proof.

5. COMPLEXITY OF SOCIAL WELFARE
OPTIMIZATION: K-ADDITIVE FORM

Chevaleyre et al. [2] conjectured that ESWOs-444itive 18 NP-
complete. We solve this conjecture in the aff rmative, and we prove
that even ESWO_a44itive 1S NP-complete. Furthermore, we show
the same result for NPSWO | _a4qitive-

THEOREM 5.1. For each k > 1, and

NPSWOk_aqaitive are NP-complete.

ESWOk-aqqitive

Proof. That ESWOk-additive and NPSWOk-additiVe arc
in NP, for any fxed k > 1, is again easy to see.

To show that ESWOg_a44itive 18 NP-hard, we give a reduction
from the well-known NP-complete problem PARTITION (see, e.g.,
Garey and Johnson [8]) to ESWO-additive.” PARTITION is
defned as follows: Given a nonempty sequence Ci,Cp,...,Cs of
positive integers such that C = 33, ¢j is even, is there a subset
I ©S={1,2,...,s} such that ¥jc Ci = je(s_1) Ci?

So, given an instance (Ci,Cp,...,Cs) of PARTITION, where
C =3} ,ci is even, we construct an instance (A,R,U,K) of
ESWO|_additive as follows. There are two agents in A = {a;,a,}
and s resources in R = {ry,rp,...,rs}. (Recall that each resource
can be held by one agent only, since resources are indivisible
and nonshareable.) For i € {1,2}, agent a;’s utilities are set to
ui({rj}) =cj, 1 < j <'s, which means a;’s bid for the single
resource Ij is Cj, and Uj(0) = 0. Finally, set K = C/2. Since
egalitarian social welfare gives the utility of the agent that is worst
off and since the sum of all utilities equals C, it follows that there
exists an allocation X € Il s such that swe(X) > K (in fact, even
swe(X) = K) if and only if there exists a partition.

The same reduction except with K chosen to be (C/2)% can be
used for NPSWO_aq4itive. If @ partition exists, the product of
the utilities both agents can realize in the corresponding allocation
is exactly (C/2)?, since the sum of all utilities equals C. Conversely,
if there does not exist any partition, then for all allocations X € I, g
there is some Ax > 0 such that one agent can realize a utility of
C/2+ Ax, whereas the other agent can realize only C/2 — Ax in X.
Hence, the Nash product is

(C/2+Ax) (¢/2— Ax) = (C/2)* = A% < (C/2)?,

7Since for each k > 1, 1-additive utilities can be written as k-
additive utilities (namely, by setting uj(T) = 0 for all T C R
with 1 < ||T|| <k, see Conitzer et al. [5]), ESWO|_adqitive i8
arestriction of ESWOyg_a44itive- Thus, proving ESWO | _a44itive
NP-hard immediately yields NP-hardness of ESW Oy_a44itive fOr
allk > 1.
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which establishes NP-completeness of NPSWO | _aqgitive- O

Chevaleyre et al. [2] conjectured that XUSWOs_a4q4itive 18
DP-complete. Theorem 5.2 establishes not only this claim but
also the corresponding result for exact egalitarian social welfare
optimization.

THEOREM 5.2. For each k > 2, XUSWOg-aq4itive and
XESWOk-aqditive are DP-complete.

Proof. Membership of XUSWOy_a4qitive in DP, for each fxed
k > 2, can be seen as in the proof of Theorem 4.4.

To show DP-hardness of XUSWO,-544itive (recall Footnote 7
for why it is enough to consider the case of k = 2 in both
claims of Theorem 5.2), note that Wagner [16] proved DP-
completeness of the exact version of INDEPENDENT SET, denoted
EXACT INDEPENDENT SET (XIS, for short): Given an undirected
graph G and a nonnegative number K, is it true that the size of
a maximum independent set® of G is exactly K? Chevaleyre
et al. [3] provided a reduction from INDEPENDENT SET (IS,
for short) to USWOj-a4qitive (Which shows the NP-hardness
of the latter problem). Their reduction satisfes that the size
of a maximum independent set of the given graph equals
the maximum utilitarian social welfare of the MARA setting
constructed (maximized over all possible allocations). Combining
these two results, we immediately obtain a reduction showing
XIS <P XUSWO)_sqaitives Which establishes DP-hardness of
XUSWO3-aqditive-

In a bit more detail, as in [3] this reduction actually consists of
two steps:9

1. from XIS to XUSWO3-_a44itive (Which already proves DP-
hardness of XUSWOg-aq4itive for each k > 3), and

2. from XUSWO?)-additive to XUSWOZ-additive'

The latter reduction, XUSWO3-additive <on XUSWO1_additives
is possible since each instance of XUSWO3_a44itive can be
transformed into an instance of XUSWO1_.44itive With the same
utilitarian social welfare, where the size of the instance increases
by only a linear factor (see Chevaleyre et al. [3] for details).

Now we prove that XESWOy_a44itive 1S also DP-complete for
each fxed k > 2. Membership of XESWOk_aq4itive in DP is easy
to see.

Again, we make use of Lemma 4.3 to show hardness for DP.
This time we apply the lemma with A = CHROMATIC NUMBER
(see, e.g., Garey and Johnson [8]) and B = XESWO»_a44itive-
CHROMATIC NUMBER is known to be NP-complete and is def ned
as follows: Given a graph G = (V,E) and a positive integer k <
IV ||, decide whether it is possible to color the vertices of G with
at most K colors such that any two adjacent vertices have distinct
colors. Such a coloring is said to be legal. We assume the vertices
inV to be labeled from v; through vy .

To apply Lemma 4.3, let G = (V&,E®) and H = (VH,EM) be
two given graphs and k® and kM be two given positive integers

8 An independent set of a graph G is a subset S of the vertex set of
G such that no two vertices in S are adjacent.

This approach of presenting two reductions is necessary because
the value K in the k-additive representation form corresponds to the
maximum vertex degree of the graph in the given XIS (respectively,
IS) instance, and since XIS (respectively, IS) can be solved in
polynomial time when this graph has a maximum vertex degree
of at most two, i.e., the problem XIS restricted to graphs with
maximum vertex degree at most two is not DP-complete and the
thus restricted problem IS is not NP-complete.



such that if H is legally colorable with at most k™ colors then G is
legally colorable with at most k& colors.
First, we introduce the resources. We def ne one resource riG,

1<i< HVGH, for each vertex in G and one resource I"j", 1<j<
[VH, for each vertex in H. Now, we form the agents. We def ne k®
agents a?, 1 <i<kSC, and kP agents a'j*, 1<j<kH, to represent
the colors. Furthermore, we need dummy agents éiG and é'j", where
1<i<|VE|and 1< j<|VH|. The utilities of the agents a’,
éiG, a'j'i, and é'j" now depend on the graphs G and H:

e Each agent a®, 1 <i < |[VC|, has a utility of two for each
bundle containing a single resource re, 1 <s < |[VE||, and
a utility of —2[V¢|| for any bundle {r$,r®} if and only if
{vG,v&} is an edge in EC.

e Analogously, we def ne the utilities of the agents a'j'i, 1<j<
[VH]|, by replacing G with H above.

e Each dummy agent a®, 1 <i < |V©|, and each dummy
agent E'j", 1 < j < |VH|, has a utility of two for the empty
bundle of resources.

e Each dummy agenta®, 1 <i < ||V®||, has a utility of —2 for
the bundle containing only the single resource riG.

e Each dummy agent é'j", 1<j< HVH ||, has a utility of —1 for

H

j .

e To make sure the dummy agents can get only the resources
corresponding to their names (when maximizing egalitarian
social welfare), each é? has a utility of —3 for any bundle

containing only the single resource r?, i # j, and each é'j‘l

the bundle containing only the single resource r

has a utility of —3 for any bundle containing only rH, j #i.

e To prevent any agent aiG or ESG from getting any resource rm,
we set the utility of aiG and é? for each bundle T of resources,
1 <||T|| < 2, containing any rH! to be —|[V¢]- [VH]].

e We do the same for any agent a'j‘l and é{" and any bundle T,
1 < ||T|| < 2, containing any resource rS.

e For all agents, the utilities of all other bundles T of resources
with || T || < 2 are set to zero.

Now we form our MARA setting (A,R,U) by

A = {af |1<i<kClufal |1<j<Kk}u
@ 1<s<vepufal | 1<t< VA,
R = {rg[1<s<|VOpufr [1<t< VAL,

and the related utilities U as described above. Finally, we choose
the parameter for XESWOj_a4gitive to be K= 1.
According to Lemma 4.3 consider the following three cases:

1. Suppose G is legally colorable with k& colors and H is
legally colorable with k™ colors. Without loss of generality,
the resources corresponding to the vertices colored with
color i, 1 <i<k®, can be given to agent a?. Since those
vertices colored with the same color are not adjacent, all
agents can realize only positive utilities of at least two. The

same holds for H and a'j*. Since all resources are distributed

among the agents aiG and a, each of the agents é? and é{"
can realize a utility of two for the empty bundle. Thus, each
agent can realize a utility of at least two in this allocation
and its egalitarian social welfare thus is greater than K = 1.
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2. Suppose G is legally colorable with k® colors but H is not
legally colorable with k' colors. Again, all agents associated
with G can realize a utility of at least two. Since H is not
legally colorable with k™ colors, there is at least one pair
{Vm,Vn} of adjacent vertices, which needs to be colored with
the same color. To maximize egalitarian social welfare, it is
not possible to give both resources to the same agent, because
he or she has a utility of —2||V|| for owning both resources
at the same time. This would lead to a utility of at most zero.
So one of these resources has to be given either to dummy
agent HH or to dummy agent E,';'. But both these agents can
realize a utility of exactly one, and thus the egalitarian social
welfare in this allocation equals the parameter K = 1.

3. If G is not legally colorable with k® colors, it does not matter
whether H is legally colorable with k™ colors or not, since if
G is not legally colorable with k® colors then, analogously
to the former case, there is an agent @ who can realize
only a utility of zero, so the egalitarian social welfare in the
corresponding allocation is less than K = 1.

Applying Lemma 4.3, this proves the theorem. a

6. DISCUSSION OF INAPPROXIMABILITY

OF SOCIAL WELFARE OPTIMIZATION

In the previous two sections, we have shown that the decision
versions of certain social welfare optimization problems are
intractable: either NP-complete or DP-complete. It is natural
to ask whether the optimization problems associated with these
decision problems are intractable as well, or whether they allow
eff cient approximation schemes. In this section, we brief'y discuss
inapproximability results for social welfare optimization, where
we focus on the bundle form.

Indeed, one inapproximability result immediately follows from
the work of Chevaleyre et al. [4], who give a reduction from
SET PACKING (see, e.g., Garey and Johnson [8]) to USWOpundie
to show NP-hardness of the latter problem. Given a collection %’
of fnite, nonempty subsets of some base set S, a set packing for
% is a collection ¥ C ¢ that contains only pairwise disjoint sets
from €. The optimization problem associated with SET PACKING
is known as MAXIMUM SET PACKING and is def ned as follows.
(Note that we present optimization problems in a different format
than decision problems by changing the “Question” feld into a
“Task” feld, where the task is to f nd some optimum value.)

MAXIMUM SET PACKING
A set S and a collection ¢ of f nite, nonempty subsets

Given:

of S.
Find the cardinality of a maximum-size set packing
for ¢

Task:

The best approximation results known for MAXIMUM SET
PACKING are due to Halldérsson et al. [9], who show that
this problem can be approximated in, respectively, &'(1/]|S]|) and
O(||€||/10g?||Z||). They also note that MAXIMUM SET PACKING
and MAXIMUM INDEPENDENT SET are mutually reducible by
approximation factor preserving reductions (see Vazirani [15]
for a formal defnition),! and the same is true for MAXIMUM

10Informally speaking, this means that there is a one-to-one
correspondence between the independent sets in the graph and the
packings of the set system, so this reduction together with an o-
approximation for MAXIMUM INDEPENDENT SET yields an o-
approximation for MAXIMUM SET PACKING, and vice versa.



SET PACKING and MAXIMUM CLIQUE. Hastad [10] proved
that MAXIMUM CLIQUE cannot be approximated within a factor
of n'~% unless NP = ZPP, where n is the number of vertices in
the given graph, € is an arbitrarily small positive constant, and
ZPP is the complexity class “zero-error probabilistic polynomial
time.” Thus the same inapproximability holds for MAXIMUM SET
PACKING, where n = ||%||.

The optimization problem associated with USWOpynq1e asks for
the maximum utilitarian social welfare that can be reached in any
allocation (compare this problem with XUSW Oypypngie):

MAXIMUM UTILITARIAN SOCIAL WELFAREpynd1e

Given: A MARA setting (A,R,U), where [|Al| = |[U]| =n
and ||[R|| = m and where form indicates how the
utility functions in U are represented.

Task:  Determine max{swy(X) | X € IInm}.

We use the shorthand MAXUSWyund1e to denote the above
problem, and we let MAXESWpynda1e and MAXNPSWyyndie
denote the corresponding optimization problems for egalitarian
social welfare and for the Nash product.

Now, a close inspection of the above-mentioned reduction of
Chevaleyre et al. [4] from SET PACKING to USW Opypdi1e reveals
that it can be viewed as a reduction from MAXIMUM SET PACKING
to MAXUSWypund1e that is also approximation factor preserving.
Thus the inapproximability of MAXIMUM SET PACKING transfers
to MAXUS Wyundie as well.

It is an interesting open question whether one can prove similar
approximation factor preserving reductions from some hard-to-
approximate optimization problem to the optimization problems
MAXESWyundie of MAXNPSWyyngie. Our reduction showing
that, e.g., ESWOpunaie is NP-complete (see Theorem 4.1) is
not suitable for this purpose. Even if it were reducing from
an NP problem whose optimization version is provably hard to
approximate unless NP = ZPP (such as MAXIMUM SET PACK-
ING), this reduction would not be approximation factor preserving
because it allows only two possible utilities for the agents, zero
and one, and the defnition of egalitarian social welfare implies
that the maximum social welfare is either zero or one as well. We
feel that this obstacle is inherent to the problem MAXESWyynaie:
While the task for MAXUSWypungie 18 to maximize the sum of
the agents’ individual utilities, the task for MAXES Wyyndie is to
maximize the minimum utility any agent can realize. For the same
reason, our reduction for NPSWOpyung1e is not suitable to show
that MAXNPSWyyndie is hard to approximate.

7. CONCLUSION AND FUTURE WORK

We conclude this paper by mentioning some interesting open
issues. For example, the question of whether the complexity results
shown here also hold for the SLP form remains open; with respect
to the SLP form, only utilitarian social welfare optimization is
known to be NP-complete [7]. Another interesting open question
regards the complexity of exact social welfare optimization with
respect to the Nash product in either representation form. We
conjecture that DP-completeness holds in each case.

Regarding approximation algorithms, some open questions have
been mentioned in Section 6 already: Study the (in)approximability
of MAXESWpgundie and MAXNPSWyyndie- The same question
applies to other representation forms, such as the k-additive form.
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